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1. Introduction. Many situations arise in various fields of interest for which the 
mathematical model utilizes a random sequence of numbers, events, or both. In 
many of these applications it is often extremely advantageous to generate, by some 
deterministic means, a sequence which appears to be random, even if, upon closer 
and longer observation, certain regularities become evident. For example, electronic 
computer programs for generating random numbers to be used in Monte Carlo 
experiments have proved extremely useful. This article describes a random number 
generator of this type with several outstanding properties. The numbers are gener- 
ated by modulo 2 linear recurrence techniques long used to generate binary codes 
for communications. 

2. Linear Recurrence Relations over GF(2). Let a = {akj be the sequence 
of O's and l's generated by the linear recursion relation 

ak = Clak-. + C2ak-2 + * + Cnak-n (mod 2) 

for any given set of integers ci (i = 1, 2, * , n), each having the value 0 or 1. We, 
of course, require c. = 1, and say that the sequence has degree n. 

From the recursion, ak is determined solely (for fixed ci) by the n-tuple 
(aki1, ak-2, X , ak-.) of terms preceding it. Similarly, a.+, is a function solely of 
(ak , ak41 , ... , ak-n+1). Each such n-tuple thus has a unique successor governed by 
the recursion formula, and the period of a is clearly the same as the period with 
which an n-tuple repeats. The period p of a linear recurring sequence obviously can- 
not be greater than 28 _ 1, for the n-tuple (0, 0, 0) is always followed by 
(0,.O. *, 0). The necessary and sufficient condition that p = 2n - 1 is that the 
polynomial 

f(x )1+ Cx + C2X2 +* + X 

be primitive over GF(2) [1], [2]. 
We shall assume in the remainder of this article that f(x) is a primitive nth 

degree polynomial over GF(2); the sequence a is then a maximal-length linearly re- 
curring sequence modulo 2. These sequences have been studied and used as codes in 
communications and information-theoretic studies [3], [4]. The properties of interest 
to us at present are the following [1], [2]: 

(1) E ak = P + n-1 

-l 2 2 

(2) For every distinct set of (0, 1) integers si, s2, * * , s,, not all zero, there 
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exists a unique integer v (O < v _ p - 1) such that for every k, slak-l + S2ak-2 

+ . .. + soak_. = ak4. (mod 2). This is often referred to as the "cycle-and-add" 
property. 

(3) Every nonzero (0, 1) binary n-vector (el, e2, , e") occurs exactly once 
per period as n consecutive binary digits in a. 

Note that properties (1) and (3) follow directly from the fact that each possible 
nonzero binary n-tuple (ak-i, ak-2, * * ak-") must occur exactly once per cycle if 
a has period p = 2" - 1. 

We shall, in what follows, find it convenient to use a slightly different version 
of the sequence a. Let us define 

ak = (-l)ak = 1 - 2ak 

Under this transformation, we see that, if ak takes on the values 0 and 1, then ak 
takes the values +1 and -1, respectively. The properties (1), (2), and (3) are 
then transformed into 

( 1') EZak = -1. 
k-i 

(2') For every distinct set of (0, 1) integers si, *.* s, not all zero, there exists 
a unique integer v (O ? v ? p - 1) such that a"?aX2 2 - a* *n n= ak+v,. 

(3') Every i11 binary n-vector (el, E2, , * * n), except the all-ones vector, 
occurs exactly once per period as n consecutive elements in a. 

3. The Boolean Transform. Let g(x) be a +1-valued Boolean function of 
(0, 1) variables xix2, , Xn. Forany s =(SI, S2, * . * Sn) si= Oor 1, define 

4(s, x) = 2 12( _ 1 )six,+ +8nxrn 

These 2" functions of x, the Rademacher-Walsh functions [5], form an ortho- 
normal basis for 28-space. Relative to this basis, g(x) has components G(s) given 
by 

G(s) = 2`2 ZE 9(x)4(S, X). 
K 

That is, G(s) is the projection of g(x) on 4(s, x), normalized so that 

EZG2(s) =1. GS(S 

Similarly, we have 

g(x) E2n12 G(s)4(S, X). 

Consider the effect of setting xi = ak-i in g(x). As a function of k, a binary 
1 -sequence f kI = y is generated: 

7k = E G(s)(-1 )s1ak_1+.+8ak- 

- E G(s) a"-lak-2 . . . ak-n. 

By (2'), we now have the fourth property basic to our analysis: 
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(4) yk = G(O) + Z G(S)ak+,(s) 
s#O 

where the mapping v (s) of all binary nonzero n-vectors onto {0, 1, 2, * *, p - 11 
is one-to-one. 

4. Random Number Generation. Let a = aak} be the (0, 1) sequence 
generated by an nth degree maximal-length linear recurrence modulo 2, as described 
previously, and define a set of numbers of the form 

Yk = 0 aqk+r-laqk+r-2 ... aqk+r-L (base 2), 

where r is a randomly chosen integer, 0 _ r < 2' - 1 and L < n. That is, Yk is the 
binary expansion of a number whose binary representation is L consecutive digits 
in a; successive Yk are spaced q digits apart. For reasons essential to the analysis, we 
restrict q > L, and (q, 2' - 1) = 1. 

We can also express yk by 
L 

Yk -E 2 aqk+r-t 
tool 

Such numbers always lie in the interval 0 < Yk < 1. Because of condition (2), the 
randomness of the choice of r is equivalent to the statement that the initial value 
yo is a random choice. 

5. Analysis of the Generator. We shall find it convenient to work with a 
transformed set of numbers wk rather than the Yk . Specifically, let a = fak} be the 
:i1: sequence corresponding to a = {aa}, and define 

L 

Wk = Z 2 ?aqk+r-t 
t=1 

We see that yk and Wk are related by 

Wk = 1 - 2L - 2Yk 

There is thus an easy translation between wk and Yk. 

We generally may assume, merely from the applications to which we wish to suit 
the numbers, that n is moderately large, so that the numbers ye and w,, are ex- 
tremely numerous. For example, if n = 35, there are 3.43 X 1010 of them. We wish 
to consider only a portion of the total number of these, say N of them, and to dis- 
cover, for moderately large N, how these are distributed. 

6. Correlation Properties. The mean value of Wk is easily found as 

1p-1 L p-1 

E(Wk) - E Z k =1 E 2-t Za 
p r=O p t=i r=O 

=- 1 2-n) 

a number very nearly equal to zero for large n. 
Define the sample autocorrelation function R(m) of Wk by 
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N 

R(m) = E WkWk+m. 
N k=l 

The expected value of Rf (m) is the true autocorrelation function R (m) of the 
process, 

R(m) = E[R(m)], 

and the value R(O) is the mean-squared value of the process Wk. 

p-1 L L p-1 

R(0) =1 k E w 2-(t+u) + Zaqk+r-t cqk+r-u. 
p r=O p t=l u=l r=O 

The last sum is -1 if t $ u, and p if t = u, by (2'). Hence 

1 1 21 2-2 L) (1 2-X R(O) =1+ 2- [11 1 L2 

This shows that Wk has essentially the same variance as a uniformly distributed 
process. 

Now consider R(m), m 5 0. First, its mean value is 

N L L p-1 

R(m) = E[I(m)] = - E 2 (t+u) Z aqk+r-taq(k+m)+r-u pN k=1 t=1 u=1 r=O 

L L p-1 

1: 11 2-(t+u) Og 
ra!r+,qm+t-u 

p t=1 u=1 r=O 

The last sum is again -1 by (2') unless qm + t - u is a multiple of p. Obviously, 

qm - L + 1 < qm + t - u < qm + L - 1. 

Hence, if q ? L and m ? (p - L)/q, we see that 

0 < qm + t - u < p, 

so qm + t - u can never be a multiple of p. These conditions, mentioned earlier, 
shall now be assumed as one of our hypotheses. The mean value of R(m) is then 

R(m) = - (1 2- 2)2 p 

-2 (1 - 2-L)2 

(1 - 2-n) 

The mean behaviour of the process shows essentially no correlation between Wk 

and Wk+,m for any nonzero integer m less in magnitude than (p - L)/q. 
The sample autocorrelation function is a function of r, and is itself a random 

process; its mean-squared value for m $ 0 is 
L L L L 

E[R2(m)] = E E E E 2-(t+u+i)uij 
t=1 u=1 i=1 j=1 

where Ituij is defined by 
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1 N p-1 

/Ituij = L E LsE ?a ar+qk-t ar+(k+m)q-u ar+lq-i ar+(l+m)q-j. pTN 2k=1 1=1 = 

Now since we have restricted q ? L and 1 < m ? (p - L)/q, there exist vl and 
V2 such that 

ar+qk--tar+kq+mq-u = ar+vi X 

0r+lq-iCar+1q+mq-j = ar+v2. 

For fixed values of t, u, i, and j, there is at most one value of 1 for each k such that 
V1 = v2, since (q, p) = 1. Hence 

Ituij <- - [N(p + 1)- N2] 

produces the result, for m $ 0, 

E[R2(m)] < (1 - (P 1 - 1) 

and the value of the variance of R(m) is likewise bounded, 

var [fR(m)] < (- 2- 4 + 
2 -1 < (+ ) 

This indicates that the deviation of the sample autocorrelation function from its 
mean value is very small, and decreases inversely proportional to N. 

7. The Distribution Properties. We have shown that Wk (and, consequently, Yk) 
has essentially the same mean and variance as a uniform distribution. Now consider 
actual distributions of N values of yk on (0, 1). To do this, we consider an arbitrary 
interval in (0, 1) and observe what percentage of the N values of Yk lie in this range. 

Since we are considering binary expansions of numbers, intervals of width 2-d 
are most conveniently considered, and these will surely be sufficient to our needs. 
This is done efficiently by considering the first d positions of the vectors representing 
yk for k = 1, 2, * * *, N, and count the number of these having a specified pattern. 
This is equivalent to forming a Boolean function on the first d positions of Yk, 

whose value is, say, -1 if Yk has this initial pattern and + 1 otherwise. 
More specifically, let (e, , e2, .. , ed) be the initial pattern of ones and zeros 

we seek as a prefix to Yk . Then define the (-+1) Boolean function g(x) by 

g(x) = -1 if xi el, X2 = e2, * *, Xd = ed, 
~1 otherwise. 

The relative number of times T that a number Yk takes on the form 0 eje2 ... 

edXX ... x, and thus falls in the specified interval, is 

=N [N k=1 ]X 

where 7k has the value 

'Yk = G(O) + Z G(S)akq+r+v(s) 
Sp0 
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by the Boolean transform. The expected value of T is 
P-1 

T = E[T] - E T 
7J r0O 

= G(o) + ! G(s)J 

= - +')(o) + ZG(s)]. 

But it is easy to see from its definition that 

g(O) = ZG(s), 

and that 

G(0) = =g() 2n (2n - 2 2n-d) 

1 -d+l =1 2 

Hence, we have 

T = -1 - (1 + -)(1 - 2-l + 0) 

= (1 +-) 2 d+ 2 [g() - 1]. 

Thus, the Yk are equidistributed in the mean. 
The variance about this mean can also be bounded. First, however, we compute 

1 N N N N 1 1 

GY=,,s(u) -E1 * * ar+t-1 ... ar+9-n 
Pr-O 

YkY. = L G(s)G ) arl..- p r-0 kel 1-1 ke1 1-1 8 u p rl-i 

using t = q(1 - k). If s 5 0, and u v 0, then there exist integers vl and V2 such that 

a;, I.. * 
n 

* n = atr+,l 

ul Un 
ar+t-1 ... a~-=a~ 

and for each k there is at most one 1 such that vi = V2. Using this fact and 
the Schwartz inequality, we see 

- 

E yky, <- N{G()1+ -} + N 1 +) 
p r=O k=1 1=1 p p 

This calculation then places a bound on the variance of T, 

var [T] -E= E (1 +)G(o) + 9(o)} 

_ -[1 + G2(0) 
I 

(1 + 1) + 2 ( + I) (O)G(O) + (1 + 1)} 

If the negative terms are omitted, the inequality is stronger, 
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var [T] < 4 (1 + -)( { + 29(0)(1-2d+1)< 1 ( 1 1 2 

and, again, the deviation from expected behavior decreases as N grows larger. 

8. Higher-Order Distributions. We have seen that the numbers Wk (or yk) 
are "white" and uniformly distributed. We now consider the distribution of 
(yk, Yk-12, *... , yk-m) where 0 11 < 12 < . . . < iM . It can be shown that this 
distribution is far from uniform if q(lM + 1) > n. For q(lM + 1) < n, however, 
the distribution is uniform over the unit M-cube. To show this is the case, we shall 
count the relative number of times (Yk , Yk-12 , * * , Yk'-M) lies in an arbitrary given 
2-d, X ... X 2 -d interval. Let the initial positions in the binary expansion of 
Ylk+li be O0e, el , ... , edi for i = 1, 2, * , M, and define g(x) as follows: 

g(x) ={-I if xl+j = ej for i = 1,2, ,M and j = 1, 2, di, 
gW + I otherwise.- 

Now since q(lm + 1) < n, if we let the Boolean function variables be 

Xt = aqk+r-t 

then we can use the transformed equation 

7yk = G(O) + E G(s)akZ+r+v(s) 
Sv0 

to reveal the desired properties. The previous analysis is valid, with d- d + d2 
+ * * * + dM . Therefore, the relative number of times T that (yk , Yk-l, * , Yk-lM) 
lies in the specified interval has mean value 

T = E( T) I + 2-(d1?...?dM) + 1[(0) - 1] 

and the variance about this mean is bounded by 

var ()< 4 (1+1 N + 2 

8. Summary. The conclusions reached by this analysis are stated in the following 
THEOREM. If {ak} is a (0, 1) binary sequence generated by an nth degree maximal- 

length linear recursion relation modulo 2, if for (q, 2' - 1) = 1 and q ? L, yk = 

O* ak,2ak,2 
... akL is the binary expansion of a real positive number in the interval 

(0, 1), and if Wk is a real number in the interval (-1, + 1) related to yk by Wk = 

1 - 2yk - 2-L then, averaged over all possible (assumed equally likely) initial values 
yo (or wo): 

1. The mean value , of the sequence Wk 

2~~~~~~_ an 2ar(an 2i 0 

and variance a 2 



208 ROBERT C. TAUSWAORTHE 

L \ 2L/ - zIL- 2 Q L)2] 
a2 =1 + 2-,, [1 (1 2 ) ( 1 -2 ?_2-n (1- 2)] 

J1 
3 

2. The sample autocorrelation function, defined by 

(lit)= W kEWk+m W 

Nk= 

has as its mnean value R(m), given by 

R(m) = -2-nG 2-2) 

for nonzero integral values of Im I less than (p -L)/q. The variance of R(m) about 
R(m) is bounded by 

var [m < + (2I < + 

3. The relative number of times T that Yk falls in the interval for which the first d 
positions of the binary expansion are fixed, i.e., a neighborhood of length 2-d in the 
interval (0, 1), has mean 

T= E[T] = 2 [1 + (2U 1) ? g9(0) -1] (2U ) 

~ -d 2 

for any number N of points yk. The variance of T is bounded by 

var[ T] < 4 + (2n-1) N 
+ (2n -1) 4N 

4. The relative number of times T that (yk a yk-12, * yk-l ) falls in the interval 
of the unit M-cube for which the first di positions of the binary expansion of Yk+lj are 
fixed, i.e., in a 2-d X 2-d2 X X 2- interval in the unit M-cube, has mean value 

T E(T) = 2 1? dM) (1 + I ) ? 2-n ((o! y2) 
d 

2-1+d2+. .+dm) 

for any number N of points (yk, Yk-12 , ... , y;:-im), provided 0 < 12 < < * lM 

< n/q - 1. The variance of T is then bounded by 

var [iT] < - + 2+ [ _+ 

9. Primitive Polynomials. In order to implement the generator, it is necessary 
to find a primitive polynomial f(x) over GF(2). A complete tabulation up through 
degree 34 appears in Peterson [6]. The form easiest to implement is usually one in 
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which the recursion relation has fewest terms. Golomb et al. [7] have found primitive 
trinomials for most degrees through degree 36. 

Watson [8] has published a table giving one primitive polynomial for each degree 
up to 100. A degree 35 polynomial f(x) = x36 + X2 + 1 is very useful for generating 
numbers on an IBM-7094, whose numerical register contains 35 digits. In this case 
the period p = 23- 1 is relatively prime to 35, so q may be set equal to 35 for 
maximal precision (L = n) numbers. Preliminary experimental results indicate 
that the bounds given here are indeed valid for arbitrary sample sequences Yk. 

Additional tests have shown that with L = q = 17, the pair (Yk , Yk+1) is uniform 
on the unit square. 
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